

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission.
Copyright © 2010 Alexander Victor Berka. All rights reserved.

Space and the Synchronic A-Ram.
A Spatial Language for a Massively Parallel, Formal Model of Computation.

Alex V Berka
Isynchronise Ltd.

email alex.berka@isynchronise.com

Abstract
Space is a research language that exploits the massive

parallelism available in a formal model of computation
called the Synchronic A-Ram, and provides a framework
for developing general-purpose parallel environments for
FPGA and reconfigurable architectures. Space is an
example of an interlanguage; a textual environment that
was developed to address shortcomings associated with
conventional tree languages for representing dataflow,
allowing complex syntax trees to be collapsed into a
simplified form. Space is encapsulated, strictly typed, and
mutex-free by design. Barring operations associated with
memory allocation and compilation, modules cannot access
global variables, and are referentially transparent. Modules
exhibit a small, sequential state transition system, aiding
verification. Space deals with communication, scheduling,
and resource contention issues in parallel computing, by
resolving them explicitly in an incremental manner, module
by module, whilst ascending the ladder of abstraction. An
environment has been developed, which incorporates a
simulator and compiler that transform Space programs into
Synchronic A-Ram machine code consisting of only three
bit-level instructions, and a marking instruction. Space and
the Synchronic A-Ram do not exhibit iteration, data
structure, and deadlock issues associated with conventional
dataflow models. The implementation of high level
computation and massive MIMD parallelism on a simple
formal model, closes a missing link in computer science,
and points to architectures and environments that are less
susceptible to contention and programmability issues
associated with multithreading on processor networks.

Keywords: Interlanguages, Space, Synchronic A-Ram.

1. Introduction.
Multi-threading on the Von Neumann processor network
remains arguably the leading approach for general-purpose
parallelism, despite attempts to extend the applicability of
SIMD/GPU model [1][2]. But multithreading has over four
decades, struggled to enter a mainstream demanding the

best available cost-performance ratios, because of what
appear to be inherent problems. Early doubts were
expressed by proponents of Dataflow Models [3]
concerning memory and synchronisation issues. A survey
[4] observed that historically, the development of multi-
threading was ad hoc, because it preceded a general
purpose, theoretical model of parallel computation. It
proved to be difficult to devise multi-threading
programming models that shielded the programmer from
the tedious low level tasks of efficiently assigning threads
and communication links to Von Neumann processing
elements, and that provided a easy way for programmers to
avoid resource contention [5][6][7][8].

1.1 Space Interlanguage and the Synchronic A-Ram.
 The paper outlines a circuit oriented language
environment for representing aspects of dataflow called
interlanguage, which was used to derive a family of low
level, finite and infinite formal models called the α-Ram
family, including the finite Synchronic A-Ram [9]. The
models are formal, to be simulated only. Their purpose
partly, is to contribute insights into how to devise viable
parallel environments and architectures. Space is a
programming interlanguage for the Synchronic A-Ram, and
describes parallel algorithms at any level of abstraction,
with the temporary exceptions of virtual functions and
abstract data types. Interlanguage concepts have been tested
in a programming environment called Spatiale [10],
incorporating a simulator and compiler that transforms
Space programs into Synchronic A-Ram machine code.
Providing a methodology is adhered to, the runtime
environment does not need to consider deadlocks. Race and
time hazards are resolved by local synchronisation.

1.2 Sample Space module.
 The module bigaddition in Figure 1 employs an array of
65,536 sub-modules belonging to the adder32 class, that
adds two 32-bit integers with a maximum running time of
736 Synchronic A-Ram cycles. The code for bigaddition
consists of numbered columnar representations called
interstrings that express data movements and resource
allocation relating to the preceding layer of abstraction, and
sub-module activations. The interstrings contain a control
variable i, and are attached to parallel iteration deep
constructs, which instruct the compiler to vertically
replicate the interstring pattern 65,535 times.

module bigaddition{ // Line 1 seeds the inputs of the adder array
 // Line 2 activates adder array, and transfers adder outputs to module outputs
 storage{

REG outputarray[65536] output; // module has no inputs, only an output array
 };

 submodules{

 adder32 adder[65536];

 };
 replications{i/inc, 2*}; // declaration of control variable and incremental functions:

// integer increment and multiply by 2

 time: 759-759 cycles;

 code{

 1.1: #i -> adder[i].input0 :> 1: deep<i=0; i<= 65535; inc > (2,0) :;
 #i/2* -> adder[i].input1

 2.1: __adder[i] :: adder[i].output -> outputarray[i] :> 2: deep<i=0; i<= 65535; inc > (3,0) :;

 3: HALT :;

 };
};

Figure 1. Space module that performs 65,536 distinct 32 bit integer additions.

The module seeds the adder32 submodule inputs with
distinct immediate values determined by the control
variable and an incremental function, and outputs the
results into a register array. The module commences
execution with the composite line 1. The deep structure
mentions an egress line number (2,0), that transfers
program control to line 2, upon completion of line 1. The
second deep egress directs the module to a HALT. The
module completes 65,536 simultaneous additions in 759
cycles. Spatiale compiles the module in half an hour, and
simulation takes two and a half hours on a 1.5Ghz G4
processor. It is argued in [9] that it is not feasible to
simulate high level computation or massive parallelism on
multi-tape Turing Machines and graph rewriting versions
of the λ-calculus, because of the models adverse
complexity characteristics. Additional mechanisms for
expressing parallel algorithms in Space are discussed in
section 5.

1.3 Organization of the paper.
 Section 2 describes the background to interlanguages,
which belong to the category of spatially oriented
programming languages. Section 3 describes the
Synchronic A-Ram formal model. Section 4 briefly
overviews a language called Earth, which is close to the
Synchronic A-Ram machine code, and allows the
definition of the most primitive program modules used in
Space. Section 5 presents Space, summarizing the type
system and module declarations, and defines the basic
interstring language structures, and presents program
examples. Section 6 concludes by summarising the key
benefits of Space and Synchronic A-Ram paradigm,
henceforth termed synchronic computation.

2. Spatial Languages and Interlanguages.
Differing perspectives on what constitutes a spatially
oriented programming language were presented in [11]
[12][13][14], centering around hardware oriented syntax,

program modules having a schematic or circuit character,
and instructions being executed in situ without fetch. The
spatial approach questions the outlook that software may
be fully abstracted from hardware. It is noteworthy that no
pure λ-calculus simulation environment for a high level
language has ever been devised, that can feasibly simulate
non-trivial programs [9]. A spatial act of computation or
communication is always linked in some way with a
machine resource or channel. Verilog, VHDL, and
configuration data for FPGAs and reconfigurable arrays
of ALUs may be characterized as spatial. Interlanguages
are generalized spatial languages, which provide a means
of bypassing three structural features found in formal and
programming languages, that have been carried over from
human languages. It is argued in [9] that the features have
contributed towards preventing the emergence of a viable
model of parallel computation.

2.1 Features associated with conventional tree syntax.
 The programming of a novel parallel algorithm, in
general requires an explicitly parallel language. The first
feature relates to natural languages inability to express
parallelism directly, so that many basic sentences may be
conveyed simultaneously, thereby providing a cue for
their meanings to be processed in parallel.
 The second feature is called the Single Parent
Restriction (SPR). SPR is the linguistic counterpart to the
defining characteristic of trees; every node or part of
speech may only participate in at most one more complex
part of speech. SPR limits a part of speech describing an
object, from participating directly in the expression of
more than one relationship on a syntactic level, unless
some form of naming, normally involving a semantic
notion of storage, or sub-expression repetition is used.
Repetition can result in an exponential increase in size for
dataflow representations with respect to dataflow depth,
compared with graph forms [9]. SPR is associated with
trees with high structural variability, requiring complex

parsing, and whose contents cannot easily be identified
and accessed in parallel. Even if extensions are added to a
tree language in order to describe parallelism on the
syntactic level, as is the case with most parallel
languages, SPR complicates the expression of shared
structures in parallel processes.
 The third feature relates to natural languages non-
spatial character. They do not allow the tagging of
abstract spatial information at the level of syntax, relating
to data transfers and allocation of jobs to resources on a
semantic level or preceding abstraction layer, that is
argued in [9] is helpful in avoiding resource contention
and state explosion in parallel computing.

2.2 Related work dealing with language features.
 Semantic networks [15] [16] and graph rewriting
systems [17] [18] might be characterized as implicitly
parallel formalisms, and addressed the SPR issue, but
were non-spatial. They suffered from requiring pattern
matching for an application of a deduction/rewriting rule,
which needs the solution of the NP-complete sub-graph
isomorphism problem. There are further combinatorial
issues attendant upon implementing multi-threading on
Von Neumann processor network implementations [9].
No semantic or graph machine models emerged.
 The Dataflow Model (DM), developed in [18] [19] and
[21] was another implicitly rather than explicitly parallel
approach, that acknowledged the primacy of dataflow,
and had a spatial character. Program control relied on a
notion of a marking, consisting of a number of data
tokens, being associated with the inputs of a functional
node, being passed onto downstream functional nodes
upon execution of a functional operation. Johnston et al in
an influential survey [22], described software and some
hardware related issues with DMs: the token system of
program control cannot easily support iteration and data
structures for dataflow programming languages, without
adding significant complexity and potential deadlocks to
programs. The latter placed severe limitations on DMs
programmability. The survey also argued there was a
mismatch between the fine-grained parallelism of
dedicated dataflow architectures, and the coarse grained
nature of many problems.
 Finally, reference should be made to systolic
programming models for coarse grained arrays of ALUs
(CGAs) [12][14][23]. Systolic data sequencing and
configuration software for CGAs bypass SPR, are spatial,
and embody aspects of explicit parallelism, but lack a
fundamentally novel theoretical model beyond the coarse
grained systolic grid itself. Program control in systolic
programming models relies on DM-type data tokens. The
models are not general purpose, and suffer from being
domain specific [24]. The developer is obliged to cast
every program as a stream based program.

2.3 Dynamic semantics.
 The counterargument that the language features do not
need to be dealt with by syntax, because their effects can
be handled by dynamic semantics is now briefly
considered. Programmability issues, resource contention,
and adverse cost-performance ratios associated with
multithreading, have resulted in the parallel computing
crisis. One may take the view that dynamic semantics is
enough, and all is rosy in the garden of programming

theory and conventional parallel architectures. But if
interlanguage leads to a more general-purpose compute
model that circumvents programmability issues and
resource contention, then it is likely that dynamic
semantics only ever presented a partial solution, which
discarded an opportunity to devise a better language
structure.

2.4 Interlanguage = Interstring + Abstract Memory.
 An interstring is a set-theoretical construct, designed
for describing many-to-many relationships, dataflows,
and simultaneous processes. It may be represented as a
string of strings of symbol strings, where the innermost
strings are short and have a maximum length. Interstring
syntax is confined to a strictly limited range of tree forms,
where only the rightmost, and the set of rightmost but one
branches are indefinitely extendable. In conjunction with
an abstract machine environment that does not reference
semantics, an interstring can efficiently express at a
syntactic level, sharing of subexpressions in a dataflow,
scheduling, data transfers, and spatial allocation of
machine resources, for the parallel processing of complex
programs. Languages based on interstrings and abstract
memories are called interlanguages, and were formally
presented in [9]. The interlanguage environment bypasses
the three natural language defects by sharing sub-
expressions, by explicit parallelism, and by stipulating
reference to data management and resources.

f(x,y,z) =(((x + y) + (y x z) x ((x + y) - (y x z))) 1

Figure 2. An abstract memory with abstract FU array.

Figure 3. An interstring program which computes the function
in equation 1, with the result stored in cell #0.

...

x

y

...

Algebraic

Functional

Unit 1

y

z

...

Algebraic

Functional

Unit 2

opcode

opcode

0

1

2

3

4

5

6

!

 + 1() :: 3"1 :: + 1() :: 3 "1 :: # 1() :: 3 " 0 :;

 # 2() 6" 2 - 2() 6" 2

 3" 4

 6" 5

 Figure 2 depicts a finite memory of 7 cells, each of
which stores an element of the union of a set of variables
and constants. The memory is attached to a notional array
of 2 abstract functional units, but there may be any finite
number of functional units with associated memory cells.
Figure 3 depicts an interstring program, which evaluates
the value of equation 1 in a synchronous parallel manner,
if a semantic model is provided that interprets the
meanings of the algebraic operators, and assigns values to
the variables and constants from the semantic domain.
 The interstring is composed of 6 columns of
alternating types called alpha and beta columns, separated
by double colons “::”, and terminated by “:;” . The
leftmost column is an example of an alpha column, which
is a vertical string of pairs of function symbols and
integers, represented as f(j), which is understood to
express the activation of the jth functional unit with the
“opcode” f. The first and second inputs to the functional
unit are the contents of the 3j+1 and the 3j+2 memory
cells respectively. The result of applying the notional
algebraic operation associated with the symbol f, is
written into the 3j+3 memory cell. The alpha column
specifies the explicit parallel activation of functional units
in one step, but there is a restriction that there is no more
than one activation of the same functional unit.
 A beta column is a string of pairs of integers,
represented as n->m, each of which describes a data
transfer that copies “wirelessly” the contents of cell n,
into cell m. The copies are understood to all occur in one
step. Multiple reads from a cell are permissible, allowing
the sharing of evaluated subexpressions in one machine
cycle, but multiple copies to the same cell are disallowed.
It is also permissible for a cell to appear as both source
and destination in a beta column, because a copy cycle
consists of a read phase followed by a write phase. Given
a semantic interpretation, an interstring applied to a
memory, produces a sequence of memories, by executing
an alternating succession of alpha and beta columns
individually, from left to right. By convention, the result
of evaluating the function f described in equation 1, is
copied into the zeroth cell by the final beta column.
 A theorem is presented in [9], that asserts for any tree
expression in the language of 2-ary functional terms in
predicate logic, there exists a semantically equivalent
interstring/memory pair. The theorem demonstrates that
any arithmetic tree expression, which can exhibit high
structural variability, can be coded by a simple finite
memory, and an interstring whose tree structure has very
restricted structural variability. Although the syntax and
semantics for interlanguages are more complex than for
functional terms in predicate logic, they do not exhibit the
three defects described in section 2.
 Alpha and beta columns express a synchronized form
of parallelism, in which all operations in a column must
cease before moving onto the next column. Upon
initiating execution of the first interstring column, an
interlanguage compiler may however duplicate the
enhanced efficiency of the asynchronous, implicit
parallelism found in DMs, where operations from
differing dataflow columns may be triggered as soon as
outputs from operations in earlier layers become
available. The columnar format of interstrings then
becomes a scheme for representing dataflows, rather than
a dogmatic prescription for the scheduling of operations.

Opcode Destination cell (x) Offset(y)
bits 30-31 bits 5-25 bits 0-4

Table 1. Instruction format for 32-bit Synchronic A-Ram.

Opcode Instruction Action

00 wrt0 x y write 0 into (x,y)
01 wrt1 x y write 1 into (x,y)
10 cond x y mark next register if (x,y) =0, else

mark next but one register.
11 jump x y mark all instructions from

register x, up to and including
register x+y

Table 2. Instruction Set for Synchronic A-Ram.

3. The Synchronic A-Ram.
The development of the interlanguage environment gave
pointers as to what might be needed from a purely formal
model of parallel computation, which were mostly
consistent with a spatially oriented outlook. Perhaps the
most important insight was that any programmed act of
computation should always be associated with an explicit
location in which to store the result, which inspired the
design of the α-Ram family of models [9], and the
Synchronic A-Ram finite model in particular. The model
not only provides a simple semantics for an interlanguage,
but also suggests directions for developing novel
architectures.
 The Synchronic A-Ram is a globally clocked, fine
grained, simultaneous read, exclusive write machine, and
may be viewed as the lowest level, formal model for
FPGAs. It incorporates a conventional, finite array of
cells or registers composed of a constant number of bits,
wherein the transmission of information between any two
registers or bits occurs in one machine cycle.1
 If the model’s register’s bit width is 32, there are
33,554,432 registers in the array. Let (x,y) designate the
yth bit of xth register, where x is called the destination
cell, and y is called the offset. The Synchronic A-Ram’s
instruction format is displayed in Table 1, and the
instruction set is in Table 2. Subject to some restrictions,
any register is capable of either holding data, or of
executing one of four primitive instructions in a cycle: the
first two involve writing either ‘0’ or ‘1’ to (x,y), the third
instructs the register to inspect the bit stored in (x,y), and
select either the next or next but one register for activation
in the following machine cycle, and the fourth is a jump
which can activate the instruction in register x in the
following machine cycle, and also those in subsequent
registers specified by the offset operand y.

3.1 Program control.
 In the Von Neumann model, program control passes
from one register containing an instruction to another, so
that only one instruction is ever active per cycle. In the

1 Although problematic from a physical standpoint, it is argued in [9]
that this assumption can be worked around in deriving architectures, by
incorporating a notion of signal propagation, and by the inclusion of
Globally Asynchronous Locally Synchronous mechanisms for scaling.

Synchronic A-Ram model, multiple registers/instructions
may be active per cycle, and execute in situ. Further, a
Synchronic A-Ram assumes no ALU with the standard
arithmetic functions; all operations have to be defined
using only the four primitive instructions.
 A marking represents a subset of registers, indicating
which instructions (one per register) are to be executed in
the next machine cycle. A machine state is the pair of the
memory block and the marking, which initially only
contains the instructions in registers 1 and 2. The
Synchronic A-Ram’s state transformation function is
based on the instruction set, and an error detection
scheme. A machine run consists of the state
transformation function being repeatedly applied to the
machine state either indefinitely, or until a special
termination condition arises. An A-Ram process may
therefore be seen as a sequence of pairs of memory blocks
and markings. The model’s formal definition in [9]
incorporates error conditions that halt a machine run, if
ill-defined or nonsensical behaviour is detected, including
multi-set markings and multiple writes to the same bit.
The removal of parallel-related contentions at the most
primitive level of machine activity, contributes to
eliminating contention in higher-level programming.

4. Earth.
Earth is a primitive parallel programming language, and is
close to the level of Synchronic A-Ram machine code.
Earth has numerous features [9], which facilitate the
composition and readability of machine code. An Earth
program is the most basic submodule that can be
employed in a Space program. Earth and Space modules
have a level, which is an unsigned integer representing the
depth of module composition.
 Earth is equipped with a replicator mechanism
employing a control variable, for repeating code
segments. In addition to VHDL and Verilog array type
definitions of logic blocks and simple data transfer
patterns between blocks, Earth replicators allow the
concise definition of more complex logic gate and data
transfer patterns.
 Earth is powerful enough for modules to duplicate the
functionality of complex sequential digital circuits, with a
high degree of circuit parallelism. The size and depth of a
sequential digital circuit, are approximately proportional
to the size and cycle completion time respectively of an
Earth implementation, providing the programmer matches
the module’s parallelism to the circuit’s parallelism.
Subject only to the constraint imposed by memory block
size, the Earth programmer is perfectly at liberty to do
this, given the highly parallel nature of the Synchronic A-
Ram. Earth modules can readily implement primitive
operations performed by devices such as n-input logic
gates, register shifters, demultiplexers, incrementers,
adders, and the arithmetic-logic functional units found in
processor cores.

The code in figure 1(a) implements a sequential 4 input
AND gate called seqand4, declares storage variables and
their interface categories, much in the same style as a
schematic VLSI module. Setting the busy bit indicates to
the user that the machine is running. Resetting the busy
bit indicates the machine has halted. An Earth jump
instruction does not have to use an absolute register
address x, and can employ a relative jump number, that

refers to a labeling system in the code. The module also
employs a replicator that generates the code in Figure
1(b). Note execution begins by marking the first two
instructions.

NAME: seqand4;
BITS: busy private, output output;
BYTES: input input; // leftmost 4 bits not used
TIME: 4-7 cycles; // min and max running times

 wrt1 busy
<0;i;3>{ // replicative structure
 cond input.i
 jump 1 1
}
 jump 3 1
1 wrt0 output // first relative jump no.
 jump 2 0
2 wrt0 busy
3 wrt1 output
 jump 2 0
 endc // end of code

Figure 4. Replicative 4 bit AND gate.

 wrt1 busy
 cond input.0
 jump 1 1
 cond input.1
 jump 1 1
 cond input.2
 jump 1 1
 cond input.3
 jump 1 1
 jump 3 1
1 wrt0 output
 jump 2 0
2 wrt0 busy
3 wrt1 output
 jump 2 0
 endc

Figure 5. Replicated code for 4 bit AND gate.

5. Space.
Space was first presented in [9], and has a functionality
comparable to C. Space is applicative, and is claimed to
bypass the readability and efficiency issues associated
with recursion based, functional style programming,
whilst retaining verification friendly features such as state
transition semantics, type strictness, and lack of side
effects. The major features of Space are summarised in
this section.
 In common with an Earth module, a Space module is
described in the spatial style as a hardware functional
unit, and has names for the memory locations that hold
the module’s inputs, outputs, and internal storage. Space
modules have declarations, one relating to pre-defined
typed storage entities, and another to pre-defined library
modules, called submodules. With some qualifications, a
submodule does not retain a state between calls, or deliver
differing outputs to identical inputs, making Space for the
most part referentially transparent. In the role of a
submodule, a module represents a category or class of
processes, and has instances. A submodule cannot simply
be called as an abstract software entity divorced from
hardware. A submodule instance must be called, whose
label is the first link in a chain, that reaches all the way
down through layers of abstraction to machine resources.

module euclid{

 storage{
 unsigned a input; // a must be greater than or equal to b
 unsigned b input;
 unsigned gcd output;
 };
 submodules{
 paror32 neqz; // 32 input OR gate functions as test for not equal to zero
 modulus mod; // modulus is based on somewhat slow subtraction based implementation
 };
 time: 1615-0 cycles;// min time is shown for a=b=1, max time is very large if a>>b=1

 code{

 1: b -> neqz.input :: _neqz :: cond_neqz.output (3,0) (2,0) :;
 a -> mod.dividend
 b -> mod.divisor

 2: _mod :: mod.remainder -> neqz.input :: _neqz :: cond_neqz.output (3,0) (2,0) :;

 mod.remainder -> mod.divisor
 mod.divisor -> mod.dividend

 3: mod.dividend -> gcd :: HALT :; // transfer penultimate mod output to gcd

 };

};

Figure 6. A level two module implements Euclid’s algorithm on two non-negative integers stored in a and b, where for simplicity the
number stored in a is stipulated to be greater than or equal to the number in b. The greatest common divisor in gcd is obtained, by invoking
the main loop described in line 2. The output gcd is recovered from the penultimate cycle’s remainder, which continues to reside in
mod.dividend. The code has no co-active parallelism. The only parallelism at the module’s level of abstraction relates to data transfer in the
copy columns of lines 1 and 2. Examples of more complex modules may be found in [9].

5.1 Type System and Storage Declarations.
 Earth’s types and some other basic types are pre-loaded
into Space’s type library. A new type may be derived by
forming a construct whose members are pre-defined,
existing types. The compiler calculates the space
requirement for a module’s type declaration, by summing
the amounts of registers that each member of the
definition requires, based on its type and aggregate
construct.
 The four kinds of aggregate constructs are: singletons,
arrays, pointers, and a linked list of arrays structure called
a blockstring. A storage entity of a module of composition
level n, has an interface category, which can indicate
whether it is private to the module, and cannot be directly
accessed by a module of level n+1 or higher, or whether
the entity is input or output or both, and is public, and
therefore accessible to higher level modules,
incorporating the module as a submodule.
 The set of Space interface categories is identical to
Earth’s: input, output, ioput, and private. A storage
declaration consists of a type name, a label representing
an instance of the type, an aggregate construct (not
needed for singletons), and an interface category. The
type system is strict, in the sense that with a few
exceptions involving low-level types, the contents of a
storage entity, or of a storage entity associated with a
submodule, can only be copied into the contents of
another entity of the same type. At this stage of compiler
bootstrapping, special modules must be written for each
type, to implement memory allocation, pointer
dereferencing, and access of array elements whose index
varies at runtime. A block in memory is set aside from
code to function as a heap during runtime.

5.2 Submodule Declarations.
 The submodules declaration lists a series of member
declarations of submodules, or arrays of submodules. A
member declaration has a module class name, and a label
name with aggregate construct, where the label represents
a link to machine resources. A label name can assist the
programmer in remembering any special role for the
submodule(s). Labels facilitate software maintenance. If a
submodule declaration is edited so that a sub-module
class is substituted for an alternative, more efficient class
with identical interface names, whilst retaining the same
label, then no further editing of the module’s code is
required. Sub-modular aggregate constructs are restricted
to singletons, and arrays with up to three dimensions.

5.3 Code.
 Space’s interstrings and program constructs enable the
compact description of massively parallel code that
incorporates resource allocation and data transfer
management. Space code consists of a numbered
sequence of interstrings called base lines, whose columns
are separated by the ‘::’ notation used in the interlanguage
environment. A base line typically computes results of a
dataflow, and the final column may also test a condition,
and/or transfer control to other baseline(s). Some
baselines may be attached by the notation ‘:>’ to
replicative and program control structures called construct
lines. The Space compiler has a phase that processes and
removes construct lines, leaving behind only (a possibly
massive quantity of) base lines. A base line or construct
line represents a subprogram of the module, with a single

entry and at least one exit point. A construct line may
have other construct-lines as components.
 Both base and construct lines have a numerical label
called a line address, which is a system where a string of
integers is employed for the purpose of expressing
component relationships between lines.

A base line is composed of a sequence of columns of
instructions, drawn from a set of eight instructions, called
the base set. The copy instruction employs an arrow, and
transfers the contents of one storage entity to another of
the same type, and corresponds to an interlanguage beta
column. The activation instruction employs an underscore
to indicate the activation of a submodule, and corresponds
to an interlanguage alpha column. Activation of differing
submodule classes in an activation column permits one
kind of MIMD parallelism. A cond instruction tests a bit,
and together with a jump can transfer program control to
more than one base line by using an offset operand.
 The deep construct has a single base line as it’s only
dependent line, and can express SIMD and limited SPMD
parallelism. As exemplified in Figure 1, it defines a
vertical replication of base-line code, in which a control
variable is modified. In Figure 7, the grow construct is
applied to a multi-line sub-program, and replicates the
entire sub-program, in which a control variable is
modified. Grow allows fully programmable SPMD
parallelism within the module’s level of abstraction.
These constructs require barrier synchronisation in the
current compiler implementation, and would be
inefficient in a real environment with propagation delay.
Alternative synchronisation mechanisms based on
localized control are under investigation.

5.3.1 Meta-modules.
Meta modules can retain a state by modifying a

segment of their own code, and can then be separately
instructed to execute that modified segment. Intentionally
non-referentially transparent modules have roles in re-
using code segments, and implementing high level
programming features. A meta module’s first phase is
activated by the underscore, and performs the compiler-
like task of modifying code. The second phase executes
the modified code, and is activated using a hyphen.

5.3.2 Co-active Parallelism.
 A deep-replicated baseline can only express a limited
form of SPMD parallelism within a module, because there
can be no explicit program control involving selection
before the final column. In order to enable more complex
forms of parallel programming, a second source of
explicit parallelism in Space, is the ability to
simultaneously activate multiple lines. A parallel
algorithm often requires differing forms of replicated
code to be active simultaneously. The presence of offsets
in program control instructions in base-lines, and certain
construct-lines, can instruct a number of subprograms
represented by construct lines, and baselines to begin
executing simultaneously, that will typically terminate at
differing times. Such a set of lines is said to be co-active.

5.3.3 Containing Parallelism.
 Unconstrained column and co-active parallelism have
the potential to generate an undesirable number of states.

A number of measures are taken to contain parallelism.
Space does not allow the use of mixed base set instruction
parallelism in a baseline column. Selection and jumps to
other lines do not appear before the end of a base line,
occurring only in the final base line column. Space is
designed so that a module’s behaviour may be
characterized as a conventional sequential state transition
system, where each state is associated with a set of co-
active lines. The state system allows SIMD, M-SIMD,
SPMD, MIMD, and other kinds of deterministic
parallelism [9]. Further mechanisms will enable cellular
automata and stream based programming. To achieve
sequential state transition, a programming methodology is
adopted, which constrains the way in which the
programmer may invoke co-active parallelism.
 A base line may not be activated, if it has not terminated
from a previous activation. One base or construct line in a
co-active set, is designated as the carry line, and takes as
long or longer, to complete than the other lines. The carry
line has the role of transferring control to the next state of
the program (the next co-active set), at the end of its
execution. The other members of the co-active set are
forbidden from activating lines outside the co-active set,
either whilst running, or upon their termination. The co-
active sets that may be active at any stage of a module’s
run, are pre-determined at program composition time.
 Scheduling, resource allocation and contention
avoidance may be easily accomplished within the narrow
confines of a module, and once resolved may be safely
ignored at higher levels of abstraction.

6. Conclusion and Future Work.
The Synchronic A-Ram provides a simple semantics for
exploring high-level deterministic parallelism in Space.
The interlanguage environment affords a means of
bypassing the three defects that impede the description of
parallelism, associated with formal and programming
languages whose syntax has been templated from natural
language. Interlanguages share subexpressions, support
implicit as well as explicit parallelism, allocate resources,
and facilitate the avoidance of resource contention.
 The characterization of each Space module as a state
transition system affords a means of avoiding deadlock
and state explosion. Referential transparency, type
strictness, and determinism will further assist the
development of verification tools for Space, and
contribute towards enhanced programmability compared
with multithreading.
 The implementation of high level massive parallelism
on a simple formal model with viable complexity
characteristics, has gone some way to validating the
conceptual basis of synchronic computation, and points to
architectures and environments that have the potential to
be less susceptible to contention and programmability
issues associated with multithreading on processor
networks. New insights into the relationship between
mathematics and computing, and in complexity theory
and program semantics are also made possible [9].
 It is envisioned that synchronic computation will
provide a synchronous, deterministic environment for
general purpose, high performance computation, and
leave asynchronous and non-deterministic features that
improve efficiency to the compiler and runtime
environment.

module addarray32{

 storage{
unsigned A[32] input;

unsigned sum output;

 };
 submodules{

 adder32 add[16];

 paror32 neqz;
 rightshift32 rightshift; // register rightshift standing in for divide by two

 PJUMP{8} PJUMP; // programmable jump, where offset can be varied during runtime.

 };
 replications{ i / inc, 2*, 2*+1};

 time: 0-0 cycles;

 code{
 1: jump (2,1) :;

 2: #8 -> PJUMP.offset :: _PJUMP(5) :; // sets PJUMP with first offset value

 #8 -> rightshift.ioput
3.1: A[i/2*] -> add[i].input0 :: _add[i] :> 3: deep<i=0;i<=15; inc > (4,0) :;

 A[i/2*+1] -> add[i].input1

4: _rightshift :: rightshift.ioput -> PJUMP.offset :: _PJUMP(5) :; // activates PJUMP and main loop
 -PJUMP(5) rightshift.ioput -> neqz.input _neqz // and then gives PJUMP new offset

5.1: add[i/2*].output -> add[i].input0 :: _add[i] :: jump(5.2,0) :> 5: grow<i=0;i<=7; inc > (6,0) :;

 add[i/2*+1].output -> add[i].input1
5.2: subhalt(5) :;

 6: cond_neqz.output (7,0) (4,0) :;

 7: add[0].output -> sum :: HALT :;
 };

};
Figure 7. Parallel prefix adder for 32 integers. The PJUMP meta module can be programmed to vary jump offset during runtime. Used in
conjunction with the grow construct, this facility reduces the number of instruction executions required to compute parallel prefix trees.

References
[1] M. Harris, “Mapping computational concepts to GPUs,” ACM

SIGGRAPH 2005 Courses, Los Angeles, California: ACM,
2005, p. 50.

[2] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A.E. Lefohn, and T.J. Purcell, “A Survey of General-Purpose
Computation on Graphics Hardware,” Computer Graphics
Forum, vol. 26, 2007, pp. 80-113.

[3] Arvind and R.A. Iannucci, “A critique of multiprocessing von
Neumann style,” Proceedings of the 10th annual international
symposium on Computer architecture, Stockholm, Sweden:
ACM, 1983, pp. 426-436.

[4] D.B. Skillicorn and D. Talia, “Models and languages for parallel
computation,” ACM Comput. Surv., vol. 30, 1998, pp. 123-169.

[5] M. Flynn, “The Future Is Parallel But It May Not Be Easy,”
High Performance Computing – HiPC 2007, 2007, p. 1.

[6] K.E.A. Asanovic, The landscape of parallel computing
research: a view from Berkeley,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-
183.html.: EECS at UC Berkeley,, 2006.

[7] E. Strohmaier, J.J. Dongarra, H.W. Meuer, and H.D. Simon,
“Recent trends in the marketplace of high performance
computing,” Parallel Comput., vol. 31, 2005, pp. 261-273.

[8] E.A. Lee, “The Problem with Threads,” Computer, vol. 39,
2006, pp. 33-42.

[9] A.V. Berka, “Interlanguages and synchronic models of
computation,” http://arxiv.org/pdf/1005.5183., May. 2010.

[10] http://sourceforge.net/projects/spatiale/
[11] F. Vahid, “It's Time to Stop Calling Circuits "Hardware",”

Computer, vol. 40, 2007, pp. 106-108.
[12] R. Hartenstein, “The von Neumann Syndrome and the CS

Education Dilemma,” Reconfigurable Computing: Architectures,
Tools and Applications, 2008, p. 3.

[13] M. Budiu, G. Venkataramani, T. Chelcea, and S.C. Goldstein,

“Spatial computation,” SIGOPS Oper. Syst. Rev., vol. 38, 2004,
pp. 14-26.

[14] A. DeHon, Y. Markovsky, E. Caspi, M. Chu, R. Huang, S.
Perissakis, L. Pozzi, J. Yeh, and J. Wawrzynek, “Stream
computations organized for reconfigurable execution,”
Microprocessors and Microsystems, vol. 30, Sep. 2006, pp.
334-354.

[15] W.A. Woods, What's in a Link: Foundations for Semantic
Networks,, 1975.

[16] J.F. Sowa, “Principles of Semantic Networks,” Explorations in
the Representation of Knowledge. Principles of Semantic
Networks: Explorations in the Representation of Knowledge.
Morgan Kaufmann, 1991.

[17] M.R. Sleep, M.J. Plasmeijer, and M.C.J.D.V. Eekelen, Eds.,
Term graph rewriting: theory and practice, John Wiley and
Sons Ltd., 1993.

[18] R. Plasmeijer and M.V. Eekelen, Functional Programming and
Parallel Graph Rewriting, Addison-Wesley Longman
Publishing Co., Inc., 1993.

[19] G. Kahn, “The Semantics of a Simple Language for Parallel
Programming,” Information Processing '74: Proceedings of the
IFIP Congress, North-Holland, 1974, pp. 475, 471.

[20] Arvind and D.E. Culler, “Dataflow architectures,” Annual
review of computer science vol. 1, 1986, Annual Reviews Inc.,
1986, pp. 225-253.

[21] J.B. Dennis and D.P. Misunas, “A preliminary architecture for a
basic data-flow processor,” SCA, 1975, pp. 126--132.

[22] W.M. Johnston, J.R.P. Hanna, and R.J. Millar, “Advances in
dataflow programming languages,” ACM Comput. Surv., vol.
36, 2004, pp. 1-34.

[23] http://www.pactxpp.com/main/download/XPP-
III_programming_WP.pdf

[24] W. Najjar and J. Villarreal, “Reconfigurable Computing in the
New Age of Parallelism,” Embedded Computer Systems:
Architectures, Modeling, and Simulation, 2009, pp. 255-262.

