
 

 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full 
citation on the first page. To copy otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission. 
Copyright © 2010 Alexander Victor Berka. All rights reserved. 

Space and the Synchronic A-Ram. 
A Spatial Language for a Massively Parallel, Formal Model of Computation. 

Alex V Berka 
Isynchronise Ltd. 

email alex.berka@isynchronise.com 

Abstract  
Space is a research language that exploits the massive 

parallelism available in a formal model of computation 
called the Synchronic A-Ram, and provides a framework 
for developing general-purpose parallel environments for 
FPGA and reconfigurable architectures. Space is an 
example of an interlanguage; a textual environment that 
was developed to address shortcomings associated with 
conventional tree languages for representing dataflow, 
allowing complex syntax trees to be collapsed into a 
simplified form. Space is encapsulated, strictly typed, and 
mutex-free by design. Barring operations associated with 
memory allocation and compilation, modules cannot access 
global variables, and are referentially transparent. Modules 
exhibit a small, sequential state transition system, aiding 
verification. Space deals with communication, scheduling, 
and resource contention issues in parallel computing, by 
resolving them explicitly in an incremental manner, module 
by module, whilst ascending the ladder of abstraction. An 
environment has been developed, which incorporates a 
simulator and compiler that transform Space programs into 
Synchronic A-Ram machine code consisting of only three 
bit-level instructions, and a marking instruction. Space and 
the Synchronic A-Ram do not exhibit iteration, data 
structure, and deadlock issues associated with conventional 
dataflow models. The implementation of high level 
computation and massive MIMD parallelism on a simple 
formal model, closes a missing link in computer science, 
and points to architectures and environments that are less 
susceptible to contention and programmability issues 
associated with multithreading on processor networks. 

Keywords: Interlanguages, Space, Synchronic A-Ram. 

1. Introduction. 
Multi-threading on the Von Neumann processor network 
remains arguably the leading approach for general-purpose 
parallelism, despite attempts to extend the applicability of 
SIMD/GPU model [1][2]. But multithreading has over four 
decades, struggled to enter a mainstream demanding the 

best available cost-performance ratios, because of what 
appear to be inherent problems. Early doubts were 
expressed by proponents of Dataflow Models [3] 
concerning memory and synchronisation issues. A survey 
[4] observed that historically, the development of multi-
threading was ad hoc, because it preceded a general 
purpose, theoretical model of parallel computation. It 
proved to be difficult to devise multi-threading 
programming models that shielded the programmer from 
the tedious low level tasks of efficiently assigning threads 
and communication links to Von Neumann processing 
elements, and that provided a easy way for programmers to 
avoid resource contention [5][6][7][8]. 

1.1 Space Interlanguage and the Synchronic A-Ram. 
     The paper outlines a circuit oriented language 
environment for representing aspects of dataflow called 
interlanguage, which was used to derive a family of low 
level, finite and infinite formal models called the α-Ram 
family, including the finite Synchronic A-Ram [9]. The 
models are formal, to be simulated only. Their purpose 
partly, is to contribute insights into how to devise viable 
parallel environments and architectures. Space is a 
programming interlanguage for the Synchronic A-Ram, and 
describes parallel algorithms at any level of abstraction, 
with the temporary exceptions of virtual functions and 
abstract data types. Interlanguage concepts have been tested 
in a programming environment called Spatiale [10], 
incorporating a simulator and compiler that transforms 
Space programs into Synchronic A-Ram machine code. 
Providing a methodology is adhered to, the runtime 
environment does not need to consider deadlocks. Race and 
time hazards are resolved by local synchronisation.  

1.2 Sample Space module. 
 The module bigaddition in Figure 1 employs an array of 
65,536 sub-modules belonging to the adder32 class, that 
adds two 32-bit integers with a maximum running time of 
736 Synchronic A-Ram cycles. The code for bigaddition 
consists of numbered columnar representations called 
interstrings that express data movements and resource 
allocation relating to the preceding layer of abstraction, and 
sub-module activations. The interstrings contain a control 
variable i, and are attached to parallel iteration deep 
constructs, which instruct the compiler to vertically 
replicate the interstring pattern 65,535 times. 



module bigaddition{   // Line 1 seeds the inputs of the adder array 
         // Line 2 activates adder array, and transfers adder outputs to module outputs 
  storage{ 
 

REG outputarray[65536] output;  // module has no inputs, only an output array 
  };  
      
  submodules{  
 
    adder32 adder[65536]; 
     
  }; 
  replications{i/inc, 2*}; // declaration of control variable and incremental functions:  

// integer increment and multiply by 2 
 
  time: 759-759 cycles;  
  
  code{   
 
    1.1:    #i -> adder[i].input0     :>  1: deep<i=0; i<= 65535; inc > (2,0) :; 
         #i/2* -> adder[i].input1 
 
    2.1: __adder[i] :: adder[i].output -> outputarray[i] :>  2: deep<i=0; i<= 65535; inc > (3,0) :; 
           
    3: HALT :;  
    
   }; 
}; 

 

Figure 1. Space module that performs 65,536 distinct 32 bit integer additions. 
 

The module seeds the adder32 submodule inputs with 
distinct immediate values determined by the control 
variable and an incremental function, and outputs the 
results into a register array. The module commences 
execution with the composite line 1. The deep structure 
mentions an egress line number (2,0), that transfers 
program control to line 2, upon completion of line 1. The 
second deep egress directs the module to a HALT. The 
module completes 65,536 simultaneous additions in 759 
cycles. Spatiale compiles the module in half an hour, and 
simulation takes two and a half hours on a 1.5Ghz G4 
processor. It is argued in [9] that it is not feasible to 
simulate high level computation or massive parallelism on 
multi-tape Turing Machines and graph rewriting versions 
of the λ-calculus, because of the models adverse 
complexity characteristics. Additional mechanisms for 
expressing parallel algorithms in Space are discussed in 
section 5.  

1.3 Organization of the paper. 
     Section 2 describes the background to interlanguages, 
which belong to the category of spatially oriented 
programming languages. Section 3 describes the 
Synchronic A-Ram formal model. Section 4 briefly 
overviews a language called Earth, which is close to the 
Synchronic A-Ram machine code, and allows the 
definition of the most primitive program modules used in 
Space. Section 5 presents Space, summarizing the type 
system and module declarations, and defines the basic 
interstring language structures, and presents program 
examples. Section 6 concludes by summarising the key 
benefits of Space and Synchronic A-Ram paradigm, 
henceforth termed synchronic computation. 

2. Spatial Languages and Interlanguages. 
Differing perspectives on what constitutes a spatially 
oriented programming language were presented in [11] 
[12][13][14], centering around hardware oriented syntax, 

program modules having a schematic or circuit character, 
and instructions being executed in situ without fetch. The 
spatial approach questions the outlook that software may 
be fully abstracted from hardware. It is noteworthy that no 
pure λ-calculus simulation environment for a high level 
language has ever been devised, that can feasibly simulate 
non-trivial programs [9]. A spatial act of computation or 
communication is always linked in some way with a 
machine resource or channel. Verilog, VHDL, and 
configuration data for FPGAs and reconfigurable arrays 
of ALUs may be characterized as spatial. Interlanguages 
are generalized spatial languages, which provide a means 
of bypassing three structural features found in formal and 
programming languages, that have been carried over from 
human languages. It is argued in [9] that the features have 
contributed towards preventing the emergence of a viable 
model of parallel computation. 

2.1 Features associated with conventional tree syntax. 
    The programming of a novel parallel algorithm, in 
general requires an explicitly parallel language. The first 
feature relates to natural languages inability to express 
parallelism directly, so that many basic sentences may be 
conveyed simultaneously, thereby providing a cue for 
their meanings to be processed in parallel. 
    The second feature is called the Single Parent 
Restriction (SPR). SPR is the linguistic counterpart to the 
defining characteristic of trees; every node or part of 
speech may only participate in at most one more complex 
part of speech. SPR limits a part of speech describing an 
object, from participating directly in the expression of 
more than one relationship on a syntactic level, unless 
some form of naming, normally involving a semantic 
notion of storage, or sub-expression repetition is used. 
Repetition can result in an exponential increase in size for 
dataflow representations with respect to dataflow depth, 
compared with graph forms [9]. SPR is associated with 
trees with high structural variability, requiring complex 



parsing, and whose contents cannot easily be identified 
and accessed in parallel. Even if extensions are added to a 
tree language in order to describe parallelism on the 
syntactic level, as is the case with most parallel 
languages, SPR complicates the expression of shared 
structures in parallel processes. 
     The third feature relates to natural languages non-
spatial character. They do not allow the tagging of 
abstract spatial information at the level of syntax, relating 
to data transfers and allocation of jobs to resources on a 
semantic level or preceding abstraction layer, that is 
argued in [9] is helpful in avoiding resource contention 
and state explosion in parallel computing.  

2.2 Related work dealing with language features. 
     Semantic networks [15] [16] and graph rewriting 
systems [17] [18] might be characterized as implicitly 
parallel formalisms, and addressed the SPR issue, but 
were non-spatial. They suffered from requiring pattern 
matching for an application of a deduction/rewriting rule, 
which needs the solution of the NP-complete sub-graph 
isomorphism problem. There are further combinatorial 
issues attendant upon implementing multi-threading on 
Von Neumann processor network implementations [9]. 
No semantic or graph machine models emerged.  
     The Dataflow Model (DM), developed in [18] [19] and 
[21] was another implicitly rather than explicitly parallel 
approach, that acknowledged the primacy of dataflow, 
and had a spatial character. Program control relied on a 
notion of a marking, consisting of a number of data 
tokens, being associated with the inputs of a functional 
node, being passed onto downstream functional nodes 
upon execution of a functional operation. Johnston et al in 
an influential survey [22], described software and some 
hardware related issues with DMs: the token system of 
program control cannot easily support iteration and data 
structures for dataflow programming languages, without 
adding significant complexity and potential deadlocks to 
programs. The latter placed severe limitations on DMs 
programmability. The survey also argued there was a 
mismatch between the fine-grained parallelism of 
dedicated dataflow architectures, and the coarse grained 
nature of many problems.  
     Finally, reference should be made to systolic 
programming models for coarse grained arrays of ALUs 
(CGAs) [12][14][23]. Systolic data sequencing and 
configuration software for CGAs bypass SPR, are spatial, 
and embody aspects of explicit parallelism, but lack a 
fundamentally novel theoretical model beyond the coarse 
grained systolic grid itself. Program control in systolic 
programming models relies on DM-type data tokens. The 
models are not general purpose, and suffer from being 
domain specific [24]. The developer is obliged to cast 
every program as a stream based program. 

2.3 Dynamic semantics. 
     The counterargument that the language features do not 
need to be dealt with by syntax, because their effects can 
be handled by dynamic semantics is now briefly 
considered. Programmability issues, resource contention, 
and adverse cost-performance ratios associated with 
multithreading, have resulted in the parallel computing 
crisis. One may take the view that dynamic semantics is 
enough, and all is rosy in the garden of programming 

theory and conventional parallel architectures. But if 
interlanguage leads to a more general-purpose compute 
model that circumvents programmability issues and 
resource contention, then it is likely that dynamic 
semantics only ever presented a partial solution, which 
discarded an opportunity to devise a better language 
structure. 

2.4 Interlanguage  =  Interstring + Abstract Memory. 
     An interstring is a set-theoretical construct, designed 
for describing many-to-many relationships, dataflows, 
and simultaneous processes. It may be represented as a 
string of strings of symbol strings, where the innermost 
strings are short and have a maximum length. Interstring 
syntax is confined to a strictly limited range of tree forms, 
where only the rightmost, and the set of rightmost but one 
branches are indefinitely extendable. In conjunction with 
an abstract machine environment that does not reference 
semantics, an interstring can efficiently express at a 
syntactic level, sharing of subexpressions in a dataflow, 
scheduling, data transfers, and spatial allocation of 
machine resources, for the parallel processing of complex 
programs. Languages based on interstrings and abstract 
memories are called interlanguages, and were formally 
presented in [9]. The interlanguage environment bypasses 
the three natural language defects by sharing sub-
expressions, by explicit parallelism, and by stipulating 
reference to data management and resources. 
 

f(x,y,z) =(((x + y) + (y x z) x ((x + y) - (y x z))) 1 
 

 

     

Figure 2. An abstract memory with abstract FU array. 
 

 

Figure 3.  An interstring program which computes the function 
in equation 1,  with the result stored in cell #0. 
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    Figure 2 depicts a finite memory of 7 cells, each of 
which stores an element of the union of a set of variables 
and constants. The memory is attached to a notional array 
of 2 abstract functional units, but there may be any finite 
number of functional units with associated memory cells. 
Figure 3 depicts an interstring program, which evaluates 
the value of equation 1 in a synchronous parallel manner, 
if a semantic model is provided that interprets the 
meanings of the algebraic operators, and assigns values to 
the variables and constants from the semantic domain.  
     The interstring is composed of 6 columns of 
alternating types called alpha and beta columns, separated 
by double colons “::”, and terminated by “:;” . The 
leftmost column is an example of an alpha column, which 
is a vertical string of pairs of function symbols and 
integers, represented as f(j), which is understood to 
express the activation of the jth functional unit with the 
“opcode” f. The first and second inputs to the functional 
unit are the contents of the 3j+1 and the 3j+2 memory 
cells respectively. The result of applying the notional 
algebraic operation associated with the symbol f, is 
written into the 3j+3 memory cell. The alpha column 
specifies the explicit parallel activation of functional units 
in one step, but there is a restriction that there is no more 
than one activation of the same functional unit. 
     A beta column is a string of pairs of integers, 
represented as n->m, each of which describes a data 
transfer that copies “wirelessly” the contents of cell n, 
into cell m. The copies are understood to all occur in one 
step. Multiple reads from a cell are permissible, allowing 
the sharing of evaluated subexpressions in one machine 
cycle, but multiple copies to the same cell are disallowed. 
It is also permissible for a cell to appear as both source 
and destination in a beta column, because a copy cycle 
consists of a read phase followed by a write phase. Given 
a semantic interpretation, an interstring applied to a 
memory, produces a sequence of memories, by executing 
an alternating succession of alpha and beta columns 
individually, from left to right. By convention, the result 
of evaluating the function f described in equation 1, is 
copied into the zeroth cell by the final beta column. 
     A theorem is presented in [9], that asserts for any tree 
expression in the language of 2-ary functional terms in 
predicate logic, there exists a semantically equivalent 
interstring/memory pair. The theorem demonstrates that 
any arithmetic tree expression, which can exhibit high 
structural variability, can be coded by a simple finite 
memory, and an interstring whose tree structure has very 
restricted structural variability. Although the syntax and 
semantics for interlanguages are more complex than for 
functional terms in predicate logic, they do not exhibit the 
three defects described in section 2.  
     Alpha and beta columns express a synchronized form 
of parallelism, in which all operations in a column must 
cease before moving onto the next column. Upon 
initiating execution of the first interstring column, an 
interlanguage compiler may however duplicate the 
enhanced efficiency of the asynchronous, implicit 
parallelism found in DMs, where operations from 
differing dataflow columns may be triggered as soon as 
outputs from operations in earlier layers become 
available. The columnar format of interstrings then 
becomes a scheme for representing dataflows, rather than 
a dogmatic prescription for the scheduling of operations. 

Opcode Destination cell (x) Offset(y) 
bits 30-31 bits 5-25 bits 0-4 

 
Table 1. Instruction format for 32-bit Synchronic A-Ram. 

 
Opcode Instruction  Action 

00 wrt0 x y write 0 into (x,y)  
01 wrt1 x y write 1 into (x,y) 
10 cond x y mark next register if (x,y) =0, else 

mark next but one register. 
11 jump x y mark all instructions from 

register x, up to and including 
register x+y  

 
Table 2. Instruction Set for Synchronic A-Ram. 

3. The Synchronic A-Ram. 
The development of the interlanguage environment gave 
pointers as to what might be needed from a purely formal 
model of parallel computation, which were mostly 
consistent with a spatially oriented outlook. Perhaps the 
most important insight was that any programmed act of 
computation should always be associated with an explicit 
location in which to store the result, which inspired the 
design of the α-Ram family of models [9], and the 
Synchronic A-Ram finite model in particular. The model 
not only provides a simple semantics for an interlanguage, 
but also suggests directions for developing novel 
architectures. 
     The Synchronic A-Ram is a globally clocked, fine 
grained, simultaneous read, exclusive write machine, and 
may be viewed as the lowest level, formal model for 
FPGAs. It incorporates a conventional, finite array of 
cells or registers composed of a constant number of bits, 
wherein the transmission of information between any two 
registers or bits occurs in one machine cycle.1  
     If the model’s register’s bit width is 32, there are 
33,554,432 registers in the array. Let (x,y) designate the 
yth bit of xth register, where x is called the destination 
cell, and y is called the offset. The Synchronic A-Ram’s 
instruction format is displayed in Table 1, and the 
instruction set is in Table 2. Subject to some restrictions, 
any register is capable of either holding data, or of 
executing one of four primitive instructions in a cycle: the 
first two involve writing either ‘0’ or ‘1’ to (x,y), the third 
instructs the register to inspect the bit stored in (x,y), and 
select either the next or next but one register for activation 
in the following machine cycle, and the fourth is a jump 
which can activate the instruction in register x in the 
following machine cycle, and also those in subsequent 
registers specified by the offset operand y.  

3.1 Program control.  
    In the Von Neumann model, program control passes 
from one register containing an instruction to another, so 
that only one instruction is ever active per cycle. In the 

                                                
1 Although problematic from a physical standpoint, it is argued in [9] 
that this assumption can be worked around in deriving architectures, by 
incorporating a notion of signal propagation, and by the inclusion of 
Globally Asynchronous Locally Synchronous mechanisms for scaling. 



Synchronic A-Ram model, multiple registers/instructions 
may be active per cycle, and execute in situ. Further, a 
Synchronic A-Ram assumes no ALU with the standard 
arithmetic functions; all operations have to be defined 
using only the four primitive instructions.  
 A marking represents a subset of registers, indicating 
which instructions (one per register) are to be executed in 
the next machine cycle. A machine state is the pair of the 
memory block and the marking, which initially only 
contains the instructions in registers 1 and 2. The 
Synchronic A-Ram’s state transformation function is 
based on the instruction set, and an error detection 
scheme. A machine run consists of the state 
transformation function being repeatedly applied to the 
machine state either indefinitely, or until a special 
termination condition arises. An A-Ram process may 
therefore be seen as a sequence of pairs of memory blocks 
and markings. The model’s formal definition in [9] 
incorporates error conditions that halt a machine run, if 
ill-defined or nonsensical behaviour is detected, including 
multi-set markings and multiple writes to the same bit. 
The removal of parallel-related contentions at the most 
primitive level of machine activity, contributes to 
eliminating contention in higher-level programming.  

4. Earth. 
Earth is a primitive parallel programming language, and is 
close to the level of Synchronic A-Ram machine code. 
Earth has numerous features [9], which facilitate the 
composition and readability of machine code. An Earth 
program is the most basic submodule that can be 
employed in a Space program. Earth and Space modules 
have a level, which is an unsigned integer representing the 
depth of module composition.  
    Earth is equipped with a replicator mechanism 
employing a control variable, for repeating code 
segments. In addition to VHDL and Verilog array type 
definitions of logic blocks and simple data transfer 
patterns between blocks, Earth replicators allow the 
concise definition of more complex logic gate and data 
transfer patterns. 
     Earth is powerful enough for modules to duplicate the 
functionality of complex sequential digital circuits, with a 
high degree of circuit parallelism. The size and depth of a 
sequential digital circuit, are approximately proportional 
to the size and cycle completion time respectively of an 
Earth implementation, providing the programmer matches 
the module’s parallelism to the circuit’s parallelism. 
Subject only to the constraint imposed by memory block 
size, the Earth programmer is perfectly at liberty to do 
this, given the highly parallel nature of the Synchronic A-
Ram. Earth modules can readily implement primitive 
operations performed by devices such as n-input logic 
gates, register shifters, demultiplexers, incrementers, 
adders, and the arithmetic-logic functional units found in 
processor cores. 

The code in figure 1(a) implements a sequential 4 input 
AND gate called seqand4, declares storage variables and 
their interface categories, much in the same style as a 
schematic VLSI module. Setting the busy bit indicates to 
the user that the machine is running. Resetting the busy 
bit indicates the machine has halted. An Earth jump 
instruction does not have to use an absolute register 
address x, and can employ a relative jump number, that 

refers to a labeling system in the code. The module also 
employs a replicator that generates the code in Figure 
1(b). Note execution begins by marking the first two 
instructions. 

 
NAME: seqand4; 
BITS: busy private, output output; 
BYTES: input input;  // leftmost 4 bits not used 
TIME: 4-7 cycles; // min and max running times
  
 wrt1 busy 
<0;i;3>{  // replicative structure 
  cond input.i 
     jump 1 1   
} 
 jump 3 1   
1 wrt0 output // first relative jump no. 
 jump 2 0 
2 wrt0 busy 
3 wrt1 output  
 jump 2 0 
 endc  //  end of code 
 

Figure 4. Replicative 4 bit AND gate. 
  
 
 wrt1 busy 
 cond input.0 
 jump 1 1 
 cond input.1 
 jump 1 1 
 cond input.2 
 jump 1 1 
 cond input.3 
 jump 1 1 
 jump 3 1 
1 wrt0 output 
 jump 2 0 
2 wrt0 busy 
3 wrt1 output 
 jump 2 0 
 endc 

Figure 5. Replicated code for 4 bit AND gate. 
 

5. Space. 
Space was first presented in [9], and has a functionality 
comparable to C. Space is applicative, and is claimed to 
bypass the readability and efficiency issues associated 
with recursion based, functional style programming, 
whilst retaining verification friendly features such as state 
transition semantics, type strictness, and lack of side 
effects. The major features of Space are summarised in 
this section. 
     In common with an Earth module, a Space module is 
described in the spatial style as a hardware functional 
unit, and has names for the memory locations that hold 
the module’s inputs, outputs, and internal storage. Space 
modules have declarations, one relating to pre-defined 
typed storage entities, and another to pre-defined library 
modules, called submodules. With some qualifications, a 
submodule does not retain a state between calls, or deliver 
differing outputs to identical inputs, making Space for the 
most part referentially transparent. In the role of a 
submodule, a module represents a category or class of 
processes, and has instances. A submodule cannot simply 
be called as an abstract software entity divorced from 
hardware. A submodule instance must be called, whose 
label is the first link in a chain, that reaches all the way 
down through layers of abstraction to machine resources.  



 
module euclid{ 
 
   storage{   
 unsigned a input;  // a must be greater than or equal to b 
 unsigned b input; 
 unsigned gcd output;   
   }; 
   submodules{  
 paror32 neqz; // 32 input OR gate functions as test for not equal to zero 
 modulus mod; // modulus is based on somewhat slow subtraction based implementation 
    }; 
    time: 1615-0 cycles;// min time is shown for a=b=1, max time is very large if a>>b=1 
 
    code{   
 
  1: b -> neqz.input    :: _neqz :: cond_neqz.output (3,0) (2,0) :; 
       a -> mod.dividend 
      b -> mod.divisor  
     
 2: _mod :: mod.remainder -> neqz.input  :: _neqz :: cond_neqz.output (3,0) (2,0) :; 

           mod.remainder -> mod.divisor  
                   mod.divisor -> mod.dividend         
 
    3: mod.dividend -> gcd :: HALT :;  // transfer penultimate mod output to gcd     
 
      };  

}; 

 
Figure 6.  A level two module implements Euclid’s algorithm on two non-negative integers stored in a and b, where for simplicity the 
number stored in a is stipulated to be greater than or equal to the number in b. The greatest common divisor in gcd is obtained, by invoking 
the main loop described in line 2. The output gcd is recovered from the penultimate cycle’s remainder, which continues to reside in 
mod.dividend. The code has no co-active parallelism. The only parallelism at the module’s level of abstraction relates to data transfer in the 
copy columns of lines 1 and 2. Examples of more complex modules may be found in [9]. 
      

5.1 Type System and Storage Declarations. 
     Earth’s types and some other basic types are pre-loaded 
into Space’s type library. A new type may be derived by 
forming a construct whose members are pre-defined, 
existing types. The compiler calculates the space 
requirement for a module’s type declaration, by summing 
the amounts of registers that each member of the 
definition requires, based on its type and aggregate 
construct.  
   The four kinds of aggregate constructs are: singletons, 
arrays, pointers, and a linked list of arrays structure called 
a blockstring. A storage entity of a module of composition 
level n, has an interface category, which can indicate 
whether it is private to the module, and cannot be directly 
accessed by a module of level n+1 or higher, or whether 
the entity is input or output or both, and is public, and 
therefore accessible to higher level modules, 
incorporating the module as a submodule.  
   The set of Space interface categories is identical to 
Earth’s: input, output, ioput, and private. A storage 
declaration consists of a type name, a label representing 
an instance of the type, an aggregate construct (not 
needed for singletons), and an interface category. The 
type system is strict, in the sense that with a few 
exceptions involving low-level types, the contents of a 
storage entity, or of a storage entity associated with a 
submodule, can only be copied into the contents of 
another entity of the same type. At this stage of compiler 
bootstrapping, special modules must be written for each 
type, to implement memory allocation, pointer 
dereferencing, and access of array elements whose index 
varies at runtime. A block in memory is set aside from 
code to function as a heap during runtime. 

5.2 Submodule Declarations. 
     The submodules declaration lists a series of member 
declarations of submodules, or arrays of submodules. A 
member declaration has a module class name, and a label 
name with aggregate construct, where the label represents 
a link to machine resources. A label name can assist the 
programmer in remembering any special role for the 
submodule(s). Labels facilitate software maintenance. If a 
submodule declaration is edited so that a sub-module 
class is substituted for an alternative, more efficient class 
with identical interface names, whilst retaining the same 
label, then no further editing of the module’s code is 
required. Sub-modular aggregate constructs are restricted 
to singletons, and arrays with up to three dimensions. 

5.3 Code. 
     Space’s interstrings and program constructs enable the 
compact description of massively parallel code that 
incorporates resource allocation and data transfer 
management. Space code consists of a numbered 
sequence of interstrings called base lines, whose columns 
are separated by the ‘::’ notation used in the interlanguage 
environment. A base line typically computes results of a 
dataflow, and the final column may also test a condition, 
and/or transfer control to other baseline(s). Some 
baselines may be attached by the notation ‘:>’ to 
replicative and program control structures called construct 
lines. The Space compiler has a phase that processes and 
removes construct lines, leaving behind only (a possibly 
massive quantity of) base lines. A base line or construct 
line represents a subprogram of the module, with a single 



entry and at least one exit point. A construct line may 
have other construct-lines as components.  
     Both base and construct lines have a numerical label 
called a line address, which is a system where a string of 
integers is employed for the purpose of expressing 
component relationships between lines.  

A base line is composed of a sequence of columns of 
instructions, drawn from a set of eight instructions, called 
the base set. The copy instruction employs an arrow, and 
transfers the contents of one storage entity to another of 
the same type, and corresponds to an interlanguage beta 
column. The activation instruction employs an underscore 
to indicate the activation of a submodule, and corresponds 
to an interlanguage alpha column. Activation of differing 
submodule classes in an activation column permits one 
kind of MIMD parallelism. A cond instruction tests a bit, 
and together with a jump can transfer program control to 
more than one base line by using an offset operand. 
    The deep construct has a single base line as it’s only 
dependent line, and can express SIMD and limited SPMD 
parallelism. As exemplified in Figure 1, it defines a 
vertical replication of base-line code, in which a control 
variable is modified. In Figure 7, the grow construct is 
applied to a multi-line sub-program, and replicates the 
entire sub-program, in which a control variable is 
modified. Grow allows fully programmable SPMD 
parallelism within the module’s level of abstraction. 
These constructs require barrier synchronisation in the 
current compiler implementation, and would be 
inefficient in a real environment with propagation delay. 
Alternative synchronisation mechanisms based on 
localized control are under investigation.  

5.3.1 Meta-modules. 
Meta modules can retain a state by modifying a 

segment of their own code, and can then be separately 
instructed to execute that modified segment. Intentionally 
non-referentially transparent modules have roles in re-
using code segments, and implementing high level 
programming features. A meta module’s first phase is 
activated by the underscore, and performs the compiler-
like task of modifying code. The second phase executes 
the modified code, and is activated using a hyphen.  

5.3.2 Co-active Parallelism. 
 A deep-replicated baseline can only express a limited 
form of SPMD parallelism within a module, because there 
can be no explicit program control involving selection 
before the final column. In order to enable more complex 
forms of parallel programming, a second source of 
explicit parallelism in Space, is the ability to 
simultaneously activate multiple lines. A parallel 
algorithm often requires differing forms of replicated 
code to be active simultaneously. The presence of offsets 
in program control instructions in base-lines, and certain 
construct-lines, can instruct a number of subprograms 
represented by construct lines, and baselines to begin 
executing simultaneously, that will typically terminate at 
differing times. Such a set of lines is said to be co-active. 

5.3.3 Containing Parallelism. 
     Unconstrained column and co-active parallelism have 
the potential to generate an undesirable number of states. 

A number of measures are taken to contain parallelism. 
Space does not allow the use of mixed base set instruction 
parallelism in a baseline column. Selection and jumps to 
other lines do not appear before the end of a base line, 
occurring only in the final base line column. Space is 
designed so that a module’s behaviour may be 
characterized as a conventional sequential state transition 
system, where each state is associated with a set of co-
active lines. The state system allows SIMD, M-SIMD, 
SPMD, MIMD, and other kinds of deterministic 
parallelism [9]. Further mechanisms will enable cellular 
automata and stream based programming. To achieve 
sequential state transition, a programming methodology is 
adopted, which constrains the way in which the 
programmer may invoke co-active parallelism.  
   A base line may not be activated, if it has not terminated 
from a previous activation. One base or construct line in a 
co-active set, is designated as the carry line, and takes as 
long or longer, to complete than the other lines. The carry 
line has the role of transferring control to the next state of 
the program (the next co-active set), at the end of its 
execution. The other members of the co-active set are 
forbidden from activating lines outside the co-active set, 
either whilst running, or upon their termination. The co-
active sets that may be active at any stage of a module’s 
run, are pre-determined at program composition time.  
  Scheduling, resource allocation and contention 
avoidance may be easily accomplished within the narrow 
confines of a module, and once resolved may be safely 
ignored at higher levels of abstraction.  

6. Conclusion and Future Work. 
The Synchronic A-Ram provides a simple semantics for 
exploring high-level deterministic parallelism in Space.  
The interlanguage environment affords a means of 
bypassing the three defects that impede the description of 
parallelism, associated with formal and programming 
languages whose syntax has been templated from natural 
language. Interlanguages share subexpressions, support 
implicit as well as explicit parallelism, allocate resources, 
and facilitate the avoidance of resource contention.  
     The characterization of each Space module as a state 
transition system affords a means of avoiding deadlock 
and state explosion. Referential transparency, type 
strictness, and determinism will further assist the 
development of verification tools for Space, and 
contribute towards enhanced programmability compared 
with multithreading.  
    The implementation of high level massive parallelism 
on a simple formal model with viable complexity 
characteristics, has gone some way to validating the 
conceptual basis of synchronic computation, and points to 
architectures and environments that have the potential to 
be less susceptible to contention and programmability 
issues associated with multithreading on processor 
networks. New insights into the relationship between 
mathematics and computing, and in complexity theory 
and program semantics are also made possible [9].  
     It is envisioned that synchronic computation will 
provide a synchronous, deterministic environment for 
general purpose, high performance computation, and 
leave asynchronous and non-deterministic features that 
improve efficiency to the compiler and runtime 
environment.  



module addarray32{  

 storage{   
unsigned A[32] input;      

unsigned sum output;         

 };  
 submodules{ 

  adder32 add[16];   

  paror32 neqz; 
  rightshift32 rightshift;   // register rightshift standing in for divide by two 

  PJUMP{8} PJUMP; // programmable jump, where offset can be varied during runtime. 

  };  
 replications{ i / inc, 2*, 2*+1};    

 time: 0-0 cycles; 

 code{  
  1: jump (2,1) :;  

  2: #8 -> PJUMP.offset      :: _PJUMP(5) :;  // sets PJUMP with first offset value           

     #8 -> rightshift.ioput  
3.1: A[i/2*]   -> add[i].input0  :: _add[i] :> 3: deep<i=0;i<=15; inc > (4,0)  :; 

     A[i/2*+1] -> add[i].input1 

4: _rightshift :: rightshift.ioput -> PJUMP.offset :: _PJUMP(5) :; // activates PJUMP and main loop 
   -PJUMP(5)      rightshift.ioput -> neqz.input         _neqz   // and then gives PJUMP new offset 

5.1: add[i/2*].output -> add[i].input0   :: _add[i] :: jump(5.2,0) :> 5: grow<i=0;i<=7; inc > (6,0)  :; 

     add[i/2*+1].output -> add[i].input1       
5.2: subhalt(5) :; 

  6: cond_neqz.output (7,0) (4,0) :; 

  7: add[0].output -> sum :: HALT :;          
 }; 

};  
Figure 7. Parallel prefix adder for 32 integers. The PJUMP meta module can be programmed to vary jump offset during runtime. Used in 
conjunction with the grow construct, this facility reduces the number of instruction executions required to compute parallel prefix trees. 

References  
[1] M. Harris, “Mapping computational concepts to GPUs,” ACM 

SIGGRAPH 2005 Courses,  Los Angeles, California: ACM, 
2005, p. 50. 

[2] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, 
A.E. Lefohn, and T.J. Purcell, “A Survey of General-Purpose 
Computation on Graphics Hardware,” Computer Graphics 
Forum,  vol. 26, 2007, pp. 80-113. 

[3] Arvind and R.A. Iannucci, “A critique of multiprocessing von 
Neumann style,” Proceedings of the 10th annual international 
symposium on Computer architecture,  Stockholm, Sweden: 
ACM, 1983, pp. 426-436. 

[4] D.B. Skillicorn and D. Talia, “Models and languages for parallel 
computation,” ACM Comput. Surv.,  vol. 30, 1998, pp. 123-169. 

[5] M. Flynn, “The Future Is Parallel But It May Not Be Easy,” 
High Performance Computing – HiPC 2007, 2007, p. 1. 

[6] K.E.A. Asanovic, The landscape of parallel computing 
research: a view from Berkeley,  
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-
183.html.: EECS at UC Berkeley,, 2006. 

[7] E. Strohmaier, J.J. Dongarra, H.W. Meuer, and H.D. Simon, 
“Recent trends in the marketplace of high performance 
computing,” Parallel Comput.,  vol. 31, 2005, pp. 261-273. 

[8] E.A. Lee, “The Problem with Threads,” Computer,  vol. 39, 
2006, pp. 33-42. 

[9] A.V. Berka, “Interlanguages and synchronic models of 
computation,” http://arxiv.org/pdf/1005.5183., May. 2010. 

[10] http://sourceforge.net/projects/spatiale/ 
[11] F. Vahid, “It's Time to Stop Calling Circuits "Hardware",” 

Computer,  vol. 40, 2007, pp. 106-108. 
[12] R. Hartenstein, “The von Neumann Syndrome and the CS 

Education Dilemma,” Reconfigurable Computing: Architectures, 
Tools and Applications, 2008, p. 3. 

[13] M. Budiu, G. Venkataramani, T. Chelcea, and S.C. Goldstein, 

“Spatial computation,” SIGOPS Oper. Syst. Rev.,  vol. 38, 2004, 
pp. 14-26. 

[14] A. DeHon, Y. Markovsky, E. Caspi, M. Chu, R. Huang, S. 
Perissakis, L. Pozzi, J. Yeh, and J. Wawrzynek, “Stream 
computations organized for reconfigurable execution,” 
Microprocessors and Microsystems,  vol. 30, Sep. 2006, pp. 
334-354. 

[15] W.A. Woods, What's in a Link: Foundations for Semantic 
Networks,, 1975. 

[16] J.F. Sowa, “Principles of Semantic Networks,” Explorations in 
the Representation of Knowledge. Principles of Semantic 
Networks: Explorations in the Representation of Knowledge. 
Morgan Kaufmann, 1991. 

[17] M.R. Sleep, M.J. Plasmeijer, and M.C.J.D.V. Eekelen, Eds., 
Term graph rewriting: theory and practice, John Wiley and 
Sons Ltd., 1993. 

[18] R. Plasmeijer and M.V. Eekelen, Functional Programming and 
Parallel Graph Rewriting, Addison-Wesley Longman 
Publishing Co., Inc., 1993. 

[19] G. Kahn, “The Semantics of a Simple Language for Parallel 
Programming,” Information Processing '74: Proceedings of the 
IFIP Congress, North-Holland, 1974, pp. 475, 471. 

[20] Arvind and D.E. Culler, “Dataflow architectures,” Annual 
review of computer science vol. 1, 1986, Annual Reviews Inc., 
1986, pp. 225-253. 

[21] J.B. Dennis and D.P. Misunas, “A preliminary architecture for a 
basic data-flow processor,” SCA, 1975, pp. 126--132. 

[22] W.M. Johnston, J.R.P. Hanna, and R.J. Millar, “Advances in 
dataflow programming languages,” ACM Comput. Surv.,  vol. 
36, 2004, pp. 1-34. 

[23] http://www.pactxpp.com/main/download/XPP-
III_programming_WP.pdf 

[24] W. Najjar and J. Villarreal, “Reconfigurable Computing in the 
New Age of Parallelism,” Embedded Computer Systems: 
Architectures, Modeling, and Simulation, 2009, pp. 255-262. 

 


